Fragilities of liquids predicted from the random first order transition theory of glasses.

نویسندگان

  • X Xia
  • P G Wolynes
چکیده

A microscopically motivated theory of glassy dynamics based on an underlying random first order transition is developed to explain the magnitude of free energy barriers for glassy relaxation. A variety of empirical correlations embodied in the concept of liquid "fragility" are shown to be quantitatively explained by such a model. The near universality of a Lindemann ratio characterizing the maximal amplitude of thermal vibrations within an amorphous minimum explains the variation of fragility with a liquid's configurational heat capacity density. Furthermore, the numerical prefactor of this correlation is well approximated by the microscopic calculation. The size of heterogeneous reconfiguring regions in a viscous liquid is inferred and the correlation of nonexponentiality of relaxation with fragility is qualitatively explained. Thus the wide variety of kinetic behavior in liquids of quite disparate chemical nature reflects quantitative rather than qualitative differences in their energy landscapes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Theory of structural glasses and supercooled liquids.

We review the random first-order transition theory of the glass transition, emphasizing the experimental tests of the theory. Many distinct phenomena are quantitatively predicted or explained by the theory, both above and below the glass transition temperature T(g). These include the following: the viscosity catastrophe and heat-capacity jump at T(g), and their connection; the nonexponentiality...

متن کامل

Thermodynamic-kinetic correlations in supercooled liquids: a critical survey of experimental data and predictions of the random first-order transition theory of glasses.

Thermodynamics and kinetics are thought to be linked in glass transitions. The quantitative predictions of alpha-relaxation activation barriers provided by the theory of glasses based on random first-order transitions are compared with the experimental results for 44 substances. The agreement found between the predicted activation energies near T(g) and experiment is excellent. These prediction...

متن کامل

Barrier Softening near the onset of Non-Activated Transport in Supercooled Liquids: Implications for Establishing Detailed Connection between Thermodynamic and Kinetic Anomalies in Supercooled Liquids

According to the Random First Order Transition (RFOT) theory of glasses, the barriers for activated dynamics in supercooled liquids vanish as the temperature of a viscous liquid approaches the dynamical transition temperature from below. This occurs due to a decrease of the surface tension between local meta-stable molecular arrangements much like at a spinodal. The dynamical transition thus re...

متن کامل

Microscopic theory of network glasses.

A theory of the glass transition of network liquids is developed using self-consistent phonon and liquid state approaches. The dynamical transition and entropy crisis characteristic of random first-order transitions are mapped as a function of the degree of bonding and density. Using a scaling relation for a soft-core model to crudely translate the densities into temperatures, theory predicts t...

متن کامل

Finite-size effects in the dynamics of glass-forming liquids.

We present a comprehensive theoretical study of finite-size effects in the relaxation dynamics of glass-forming liquids. Our analysis is motivated by recent theoretical progress regarding the understanding of relevant correlation length scales in liquids approaching the glass transition. We obtain predictions both from general theoretical arguments and from a variety of specific perspectives: m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 97 7  شماره 

صفحات  -

تاریخ انتشار 2000